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ABSTRACT 

The design of a decision analysis is itself a complex decision prob- 

lem.  In theory, each aspect of analysis, encoding the probability density 

functions of state variables, encoding the von Neuman-Morgens tern utility 

function, and computing profit lotteries is an experiment.  The results 

of the experiments, the data, are used to update the probabilities in the 

primary decision problem. The economic value of the experiment is the 

well-known value of imperfect information. 

The drawback to the theoretical approach is that the data are func- 

tions.  Practical methods for encoding prior distributions over functions 

do not exist.  Therefore, the traditional approach is to parameterize 

the data. 

Our approach is unique because we show that for an interesting class 

of decision problems, arbitrary parameterization is not necessary.  The 

value of any data depends probabilistically only on the prior covariances 

of the posterior means.  For independent state variables this quantity 

reduces to an estimate of how much the mean of a probability density 

function will shift during an experiment. 

THE VALUE OF DATA FOR A QUADRATIC DECISION PROBLEM 

Approximate value of information calculations are essential in per- 

forming large decision analyses.  Based on a preliminary analysis, the 
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analyst must decide how to allocate his resources.  His options include 

traditional experiments, such as market surveys and pilot plants, as 

well as additional analysis.  The encoding of probability distributions 

and risk preference functions along with decision trees and Monte Carlo 

simulation are included in analysis. 

All of these activities are directed towards updating our estimates 

of the outcome or value. Their worth depends on the prior assessment 

of how much they might change our decision and the subsequent gain in 

expected value.  However, for complex decision problems finding the ex- 

act value of data requires an excessive amount of encoding and computa- 

tion.  The analyst needs to be able to make rapid, approximate value of 

information calculations. 

This paper aodresses the class of decision problems where the value 

function is approximately quadratic in both decision and state variibles. 

The main result is that the value of an experiment depends only on the 

prior variance of the posterior mean.  This is a tremendous simplifica- 

tion over thft general case where the value of information depends on the 

prior probability distribution of the posterior probability distribution. 

After we have proved the main result, we examine special cases to 

show that this is not a new idea but a generalization of an old one. The 

special cases and the discussion also identify the data required to 

operationalize the theorem. 

1. Preliminaries 

In this section we intror'uce inferential notation and the general 

terminology required to describe the decision problem. 

Notation 

Inferential notation explicitly conditions all probabilities on a 
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State of information.  The probability density function of a random var- 

iable x conditioned on the state of information §  is denoted by 

(1.1) 

We use 

of x is 

(1.2) 

Ms] • 

as a generalized summation operator; thus the Rt^1 moment 
x 

■ock|g> xkix|g} 

whether x is continuous or discrete.  Inferential notation can be 

nested.  For example, 

(1.3) [<icls2>ls13 

implies that the mean of  {x^l is a random variable given only g^ 

In addition to inferential notation, we use the following matrix 

symbols: 

a or a. ] 
—      i 

A or  [a. .] 

a1  or A1 

<3L|g> or <ai|g> 

The Basic Decision Problem 

The underscored lower case letter 
denotes a column vector with element 
a. . 
i 

The underscored capital letter de- 
notes a square matrix with element 
a. . . 

The prime denotes transposition . 

A probabilistic operation is applied 
to each component of a vector. 

The deterministic model illustrated in Fig. 1 relates the three ele- 

ments of the basic decision problem.  The decision variables ä    are set 

by the decision maker. The state variables js are set by nature.  The 

value v is the output measure that we want to maximize.  If both j; and 
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v(s,d) 
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(a)      THE DETERMINISTIC MODEL 

i   v{5,d) 

(b)      THE PROBABILITY TREE 

FIGURE 1      DESCRIPTION OF THE BASIC DECISION PROBLEM 

y 

i        ii 



d are known, we denote the decision that maximizes the value function 

d+(s) 

(1.4) d (s) = max  v(s,d) . 

However, in the basic decision problem illustrated in Fig. 1(b), 

d must be set before _s is observed. The possible outcomes are de- 

scribed by the probability density function  [s|6] . »rtiere S is the 

state of information that represents the decision maker's prior knowledge 

and experience. 

We assume that s    independent of _d in the sense that 

(i.5) laid.e] - ü|e] . 

This assumption is not restrictive. When the state variables are depen- 

dent on the decision variables the problem can normally be reformulated 

so that the dependence appears in the value function. 

The basic decision problem under uncertainty is to maximize the ex- 

pectation of v : 

(1.6) max f v(s,d) \s\e] 
d  -s 

The expansion rule from elementary probability theory is 

(1.7) <K|e>= f  <icly,e> {y|e} . 

Using this rule, we can show that the inferential symbol for the expecta- 

tion in  (1.6)   is    <v|d,e> : 
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(i.8) <v[dJe>=     <vls,d,e> [s|e] 
i 

The expectations in (1.6) and (1.8) are the same since the expected 

value of v , given _s and d is deterministically v(_s^d) . 

We define d (6)  as the decision vet tor that maximizes the expected 

value of v : 

(1.9) d (£) "max" <v[dje> 
_d 

If S represents some possible future state of information, we define 

d*(S) as the intent to use d (S) when S becomes available. 

The Value of Information 

Suppose that an analysis or experiment will provide some data D . 

Then (0,6)  represents an improved state of information.  We define 

the expected value of the data <vDle> : 

(i.io) <vDle> = <vid*(D,e),e> - <v|d*(e),e.> 

Since    S    is our prior  information,     d  (6)     is  known and  thus 

(1.11) <v|d*(e),e> = <v[d+(£),£> . 

The first term in (1.10) is the key to the value of data. Given the 

data D we would find 

(1.12) d+(D,e) = max"  <vld,D,e> , 
_d 

which would result in the posterior expected value  <v [d (D,e),D,C> . 

However, before D is revealed we must compute the prior expectation 

of this quantity : 

(i.i3) <v|d*(D,e),D,e> = <<v|d+(D,e),D,£>|e> 
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v(s,d) a + b's + e'd     , 
+5S'Es + s'Qd + p'M 

NOTATION 

i 

a 

b,C 

s 

d 

LQ.b 

Transpose of a matrix 

Constant 

Constant vectors 

State variable vector 

Decision variable vector 

Constant square matrices 

FIGURE 2      THE QUADRATIC VALUE MODEL 
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2.  The Value of Data for a Decision Problem with a Quadratic Value 

Function 

In this section we find the expected value of data for the model 

illustrated in Fig. 2.  The value function v(s,d)  is quadratic in the 

state vector _s and the decision vector d . The state variables have 

zero mean, and the decision variables are zero at the deterministic 

maximum : 

(2.i) <s|e>-o 

(2.2) d+ -max' v(<s|e>s_d) =0 

These assumptions reduce algebraic complexity without sacrificing gener- 

ality. 

We write the quadratic value function as 

(2.3) v(ssd) - a + b\s + c'd + ^ JJ'E _S + ^'G d + ^ d'H d . 

The second-order necessary and sufficient conditions  for    v(s^d)     to 

have a maximum at    <s|£>   and    d      are that the gradient of    v    with 

+ 2 
respect to    _d      W(<s|fi>,d )    be  zero and that  the Hessian    V v(<s|e>,d) 

be negative definite.     Using  (2.1)  and  (2.2)   the gradient and Hessian 

at    <s |£>   and    d      are defined as  : 
— i —o 

av(o,o) 
(2.4) 7v(<3|e>,d^)  = ^ 

2 + r^CO.O)-, 

•8- 



Applying  (2.4)  and  (2.5)   to  the definition of    v(s,d)     (2.3),  we have  : 

(2.6) W(0,0)  = c' 

(2.7) V2v(0,0)  - H 

Since the gradient in  (2.6) must be  the  zero vector,  our assumptions  im- 

ply that    c    must also be the  zero vector.     From  (2.7) we see  that  the 

Hessian does not vary with   _s    and    d    for  the  quadratic.    Therefore  if 

the detenrinistic  optimum    d      exists,    H    is negative definite and  the r _0 _ 

value  function has a global maximum with respect  to    d    for any state 

vector   _s   . 

Chronologically,  we receive  the data about  the state variables. 

Then we set  the  decision vector,  and  finally nature sets  the  state vari- 

ables.     The  state variables are independent of the decision variables but 

not necessarily  independent of each other.     We assume  that the decision 

maker is  risk-indifferent so  that maximizing  the value  function is equiva- 

lent to maximizing  the decision maker's von Neumann-Morgens tern utility 

function. 

With these preliminatires we can state  the  theorem: 

THEOREM:     For  the quadratic value  function 

(2.8) v(s,d)  = a + b's + ^ l'E _s + ^'G d + ^ d'H d 

where the Hessian H is negative definite, the value of any data D 

is 

(2.9) ^r,!^ = - •l^l0»^'G H"
1
 G« <s|D,e>le> . 



PROOF:  From (1.10) the value of the data is 

(2.io) <v
D|s>= <v[d*(D,e),D,e> - <v|d*(e),e> . 

The proof is  in  two parts corresponding  to  the  two  terms of  (2,10). 

First we determine  the prior maximum expected value    <v[d*(6),S> ; 

then we determine  the expected value given the opportunity to maximize 

after  the data is  received    <v ld*(D,fJ) ,D,6> . 

To  find    <v[d*(£),e>   we start with  the prior expected value 

<vld,£> .     Recalling  that  the expected value of the state variables  are 

all zero,   the prior expectation of  (2.8)   is 

(2.11) <v[d,e> = a +-^ .cs'E _sle> + -5 d'H d   . 

The first-order necessary condition for <v |d (6),S> to be an uncon- 

strained maximum is that the gradient be zero  at d (£) : 

(2.12) y <v|d (e)>e> - 0' 

Taking  the gradient of  (2.11)  and setting  it  to  zero,  we have 

(2.13) dNoH-O'. 

Since    H    is negative definite,    d  (£)    must be  the  zero vector.     There- 

fore  (2.11)  becomes 

(2.i4) <v[d+(e),e>- a +-| ^'E sle> . 

Returning to the first term in (2.10), the expected value given 

data D is 

-10- 
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<vld,D,e> = a + b'-cs |D,e> + -T <s'E _s |D,e> 

(2.15^ + ^ID.C^  G d +-^ ^'H d   . 

Maximizing  (2.15)  with  respect to    d    we have 

(2.16) V <v[d+(D,e),D)e> = <s !£,£>'   G + d'H = 0'   . 

Equation  (2.16)   implies   that 

(2.17) d+(D,e)  = -  H'L G'   <s|D,e> . 

Substituting  (2.17)   into  (2.15), we have  : 

<v|d+(D,e),D,e> - a + b1   <s\D,e,> + ^ ^'E _s|D,e> 

- ^iD.eyG H" G' <s|D,e> + - ^jn.ey G H"
1

^
1
 <s|D,e> 

= a + b'   <3 JD,e> + -^  .cs'E  s|D,e> 

(2.18) +j ^sjD.ey G H"1^'  <s|D,e> 

Recalling  (1.13),   the next step  is  to  take  the prior expectation 

of  (2.18).     Vie shall consider each  term separately.     Of course,  expec- 

tation does not affect  the value of the constant    a  .     The prior expecta- 

tion of  the posterior mean is  the prior mean : 

(2.i9) <<s|D,e>|e> = <^|e> 

Equation  (2.19)   is a direct application of the definition cf conditional 

probability.     Likewise,   the  third  term becomes 

(2.20) <<§'£ s|D,e>|e> = ^'E ^|e> . 

-11- 
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Applying these results to (2.18), we have 

<vld*(D)e))e> = a + 2 <S'E i|e> 

(2.2i) -\ ^ilo.ey G H"
1

^
1
 <s|D,e>je> . 

Finally,   subtracting   (2.14)   from   (2.21)   the  re:ult  is 

(2.22) <vDle>=--^ ^jD.ey G H'
1
^' <s|D,e>ie> . 

Q.E.D. 

Special Cases of the Theorem that Appear in the Literature 

Three special cases of the theorem (2.9) appear in the literature. 

Howard [2, p. 518] treats the case where H is diagonal and the data D 

is clairvoyance.  DeGroot [1, p. 234] solves for _d , the estimate of 

the random variable _s which minimizes a quadratic loss function.  In 

our notation his problem is the case where 

(2.23) I « - H ; 

a  ,  b  ,  and    G    are  zero;   and    D    is clairvouance.     Raiffa and  Schlaifer 

[4, p.   188]  present  the one-dimensional estimation problem without re- 

quiring  the data  to be clairvoyance. 

3.       Discussion of  the Value of Data  for  the Quadratic Problem 

An alternate expression  for the theorem (2.9)   is  : 

(3.1) ^ni^   = " "5  trace E      cn D' 2 -co —D 

where 

(3.2) E       = G H-1 G' 
-co — 

■12- 
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(3.3) CD r- [^s.JD.Sx sj|D,e>|?>] 

The trace of a matrix is the sum of its diagonal elements.  The value 

of data has two major components.  The basic decision problem is speci- 

fied by E   , and the experiment is described by C  .  We consider E 
-co CO 

and C  briefly for the general case.  Then for the case that is most 

common we discuss how E   and C could be generated. 
-co 

-co 
follows directly from (3.2) for a true quadratic value func- 

tion since the matrices G and H are specified.  For a problem that is 

only approximately quadratic, G and H can be found by expanding 

a Taylor series about the point  (<s|e>,_d (C)) = (0,0) : v(s,d)  in 

v(s,d) - v(o,o) + -^  i+ii'l^raTjl 

(3.4) 

I,.. 
i 

I 

-2     -, 
^ 1 3 v 
b .as.adj 

1*3 

om- The partial derivatives are all evaluated at the point (0,0) . C 

paring (3.4) with (2.8), we see that 0 and H must be matrices of 

partial derivatives : 

(3.5) 

(3.6) 

- = U,ädJ 
i J 

-= brkj i J 

The partial derivatives at the operating ooint  (0,0)  can be approxi- 

mated from open loop sensitivities. One joint sensitivity is required 

for each possible pair of state and decision variables and for each pos- 

sible pair of decision variables. 

-13- 
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The elements of the matrix C_ are the expected product of the 

posterior means.  Since the prior expectation of the posterior mean is 

zero, the elements are the covariances of the posterior means. 

WhCi. the data is clairvoyance on the state variables _s , (3.1) reduces 

to 

(3.7) <Vcle>- - \ trace Eco _C  . 

If we consider  the posterior means    <s|D,£>    as  random variables,  com- 

parison of  (3.7)  and  (3.1)   implies  that  the  value of data is  the value 

of clairvoyance on  the posterior means.     In most practical problems  the 

value of clairvoyance on  the posterior mean  is much easier  to compute 

than the value of clairvoyance on the data  itself. 

An Interesting  Special Caie 

The most  interesting special case occurs when either    Eco    or    CD 

is a diagonal matrix.     Then  the value of data becomes 

(3.8) «^D^- z^! if1^ v<:<s.lD.e>|e> 

where  the vector    jjl     is  the    tth    row of    G  : 

(3.9) £-£[] 

If the  state variables are  independent   (3.8)   is  exactly equal to 

(3.1).     Sufficient conditions  for  (3.7)   to be a good approximation to 

(3.1) ar^  that  the diagonal elements dominate  the off-diagonal elements 

of    E      :   that  is,   for each    i    and     i   : 
-co  ' J 

(3-10) pJj /H-i1 ,2 1 

14- 

 ^_ 



^» 

where     o..     is   the  correlation  coefficient 

(3.11)   p^ =<<silD>e><s .lD,e>|e>yV{^silD,e>li>^jlD)e>le>j2 

Given G , H , ^'.a C  , these expressions tell us when the diagonal 

assumption holds.  A more interesting question is whether we can avoid 

generating the entire matrices G , H and CD .  The answer is yes 

as shown below. 

Description of the Primary Problem Using Closed Loop Sensitivities 

-1 
We now s how that the term £[ H" ^ is the second partial deriv- 

th 
ative of compensation with respect to the i   state variable 

(3.12) *i«" ^i = 
CO  1 

^i 

where 

(3.13) V,^ ^c^ ■ Vo(Si) 

The open loop sensitivity is evaluated by varying si while the 

other state variables and the decision variables remain constant. We 

denote the open loop sensitivity as 

(3.14) v (s.) = v^.O,...^ ,...,0,d ) 
O  1 1. u 

In closed loop sensitivity the state variables other than si remain 

fixed, but the decision is reoptimized for each s., : 

(3.15) v (s.) - viO,0,...5s ,0,d (0,0,...,s ,...,0)) 
c  i i- •L 

To show that expression (3.12) is valid we evaluate v^s.^ and 

•15- 



v (s )  for the quadratic value function (2.8) 
c  L 

(3.16) 
1 2 

v   (s.)  = a + b.s. +— e..   s. 
oi i  i      2    ii     i 

12 1 
vc(si)  = max(a + Ks. + -^ e.isi + s.^ d + - d H d) 

(3.17) a+hiSi+12eiA-12Z'iZl&i  si 

Subtracting (3.16) from (3.17) the compensation is 

(3.18) v (s.) = 
co i 

1  , u"1   2 

Therefore,  by evaluating  the compensation curves  for  the state vari- 

ables,   the need  to  find  the matrices of partial  derivatives    G    and    H 

is eliminated. 

The Description of  the Data Generating Process  through Preposterior 

Momer ts 

The second component of  (3.8)   is     <C<si|D,6>|^   the prior variance 

of the posterior mean.     To evaluate  this  term we use  the  theorem: 

(3.19) ^s |e> = ^<s |D.e>|e> + <£%. |D,e>ie> 

A proof of this theorem is given in Raiffa and Schlaifer [4, p. 106]. 

The theorem states that the prior variance <s|e> has two sources. The 

expected posterior variance ^.< s|D,6>|6^ is a residual variance which 

will not be resolved by the experiment that generates the data D . 

The prior variance of the posterior mean ^><s|D,P>|e^ is the portion 

of the prior variance that will be resolved üV the experiment. 

Sample Data 

Expression (3.19) is best known for the case where data are N random 

16- 



samples   from     [s|ej   .     First we  consider  the   limiting  cases  of no  samples 

and  of  infinite  samples.     Then we  consider a  finite  number of  samples. 

When  the  data  is   the  null  experiment,    N = 0   ,   the  prior  and pos- 

terior  states  of   information  coincide.     Therefore,   we  have 

(3.20) 7s!D,e|-c> = <^s|e>|e>= <:s 

(3.21) ^slD,e.|e> = v<s|e'-|e> = 0 • 

When the number of samples approaches infinity, the data is clair- 

voyance about  s .  The posterior probability density function will 

have all of its ma.ss at a single point.  Consequently, the preposterior 

moments are 

(3.22) <J:s|D,e>le> = ^o|e> = o 

(3.23) 
v<rsiD^>ie> = <sle>* v'sie- 

To  discuss   (3.19)   for   finite     N     it is  convenient   to  define  the 

ratio     r 

(3.24) = v^&|D,e>le>/^|£>. 

The limiting cases are  r = 0  for the null experiment and  r - 1  for 

clairvoyance. 

A Bayesian must assign both  r ^nd  fsje] before he can calculate 

the expected value of sample information.  For example, Raiffa and 

bchlaifer [4, p. 110] suggest assigning an equivalent sample size N1 

to the term ^s |D, c'>|^^ .  Then for certain conditions the parameter 

r  is 

17- 



mm 

(3.25) 
N 

N' + N 

Assigning other    r    or    N1    weights  the prior  information relative  to 

the sample  information. 

Experiments That Do Not Involve Sampling 

Encoding and modeling are analogous to sampling because they par- 

tially resolve uncertainty about the state variable s . Encoding the 

parameter r or equivalently V<<slD,e>le> should be no more diffi- 

cult  for  these cases   than for sampling. 

4.       Con.-.lusion 

Application of the approximate value of information is a two-step 

process. First, the value function must be approximated by a Taylor 

series. This step is routine given deterministic sensitivity data. 

The second step is to encode the prior covariances of the posterior 

means of the state variables. Practical applications aro the result of 

careful modeling so that the encoding problem is tractable. 
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